1. Useful Tensor functions
  2. Useful Module function
    1. register_forward_hook(hook)
    2. register_buffer(name, tensor)
  3. Count Params and FLOPs
    1. mmengine
    2. fvcore[Recommended]
    3. torchinfo
    4. thop
    5. Benchmarking
    6. Ultra Benchmarking
  4. Miscellaneous
    1. Be careful about F.dropout
    2. Be careful about torch.squeeze()
    3. Be careful about the tensor[N] - tensor[N, 1]
    4. Fixing the paramter gradient using the register_hook function
    5. Use Tensor.requires_grad_(False) instead of Tensor.requires_grad = False

Useful Tensor functions

# batch-wise matrice multiplication
torch.bmm(A, B), A.bmn(B) 

# buffer frequently reused values (non-parameters) for speed up, e.g., positional embeddings
nn.Module.register_buffer(name, tensor, persistent=True) 

# Returns the upper/lower triangular part of the matrix, the other elements are set to 0.
torch.triu(A), A.triu()
torch.tril(A), A.tril()

# Directly return the max values along the specific dimension. No need of using `max_v, _ = A.max(dim=1)`
A.max(dim=1).values, A.max(dim=1).indices 

# Get the topk (top-5 here) values and indices. `.values` and `.indices` can be used to access the specific part.
A.topk(5)

# Matrix multiplication on the last two dimensions of tensor A and B. Multiplication (with Broadcasting) on the remaining dimensions.
A @ B 

# Casting tensor to target dtype
A.double(), A.float(), A.long(), A.int(), A.bool()

# Convert A to the type of B, including `dtype` and `device`.
A.type_as(B) 

# Get zero/one tensor like a specific tensor
A.new_zeros(size, dtype=None, device=None, requires_grad=False), A.new_ones(...)
torch.zeros_like(A), torch.ones_like(A)   # including size

# Apply function
A.apply_(func)
A.map_(B, func)   # B as argument

# Element-wise logical operators (and, or, xor)
A & B, A | B, A ^ B

# Reshape specific dimension(s) with `flatten` and `unflatten`. Alternatives: `nn.Unflatten` and `nn.Flatten`
A.unflatten(dim, size)  # reshape the specific dimension to size
A.flatten(start_dim, end_dim) # reshape the specific dimensions to 1.

# Move dimension
A.move(source, destination)

Useful Module function

register_forward_hook(hook)

Retrieve the weigths in a model is easy, but what about retrieve an output, e.g. activation after layer1.ReLU, in model with a given input? We can use the Module.register_module_forward_hook(hook) to do this. For example

features = []
def hook(module, input, output): 
    features.append(output.clone().detach())

net = LeNet() 
x = torch.randn(2, 3, 32, 32)  
handle = net.conv2.register_forward_hook(hook)
y = net(x)
print(features[0])
handle.remove()

register_buffer(name, tensor)

Register the tensor on the module with specific name, it can be accessed by Module.name in latter use. The registered Tensor will always follow the Module when you moving the module to among devices. Note that an unregisterd tensor will stay on the device where it was created.

Count Params and FLOPs

Flop is not a well-defined concept.

Demo results:

X3D-Mfvcoretorchinfothopofficial
params (M)3.793.793.793.8
FLOPs (G)5.144.734.906.2
ResNet50fvcoretorchinfothopofficial
params (M)25.5625.5625.5625.6
FLOPs (G)4.144.094.113.8

mmengine

Example

from mmengine.analysis import get_model_complexity_info
input_shape = (3, 224, 224)
analysis_results = get_model_complexity_info(model, input_shape)
print(analysis_results['out_table'])
print(analysis_results['out_arch'])
print("Model Flops:{}".format(analysis_results['flops_str']))
print("Model Parameters:{}".format(analysis_results['params_str']))

fvcore[Recommended]

FAIR is responsible for maintaining this library.

Installation:

pip install -U fvcore

Example 1:

import torch
from fvcore.nn import FlopCountAnalysis, flop_count_table, 

imgs = torch.randn(1, 3, 16, 224, 224)
model = torch.hub.load("facebookresearch/pytorchvideo", model="x3d_m", pretrained=False)

flops = FlopCountAnalysis(model, imgs)
print(flop_count_table(flops, max_depth=3))
# print(flops.total())
# params = parameter_count(model)
# print(params[''])
# parameter_count_table(model, max_depth=3)

FLOPs Output:

Using cache found in /home/louis/.cache/torch/hub/facebookresearch_pytorchvideo_main
Unsupported operator aten::add_ encountered 83 time(s)
Unsupported operator aten::mean encountered 15 time(s)
Unsupported operator aten::sigmoid encountered 15 time(s)
Unsupported operator aten::mul encountered 15 time(s)
Unsupported operator prim::PythonOp.SwishFunction encountered 26 time(s)
Unsupported operator aten::add encountered 26 time(s)
Unsupported operator aten::avg_pool3d encountered 1 time(s)
Unsupported operator aten::softmax encountered 1 time(s)
Unsupported operator aten::adaptive_avg_pool3d encountered 1 time(s)
5141904896
3794274

Example 2 (mmlab-style):

import torch
from fvcore.nn import FlopCountAnalysis, parameter_count, flop_count_table, parameter_count_table
from mmcv import Config
from mmaction.models.builder import build_model, build_backbone

inputs = torch.randn(1, 3, 16, 224, 224)
model = build_backbone(Config.fromfile("configs/mvit/mvit_16x4_kinetics400_video.py").model.backbone)

# inputs = (torch.randn(1, 1, 3, 16, 224, 224), torch.randint(10, (1, 1)))
# model = build_model(Config.fromfile("configs/mvit/mvit_16x4_kinetics400_video.py").model)

flops = FlopCountAnalysis(model, inputs)
print(flop_count_table(flops))
params = parameter_count(model)
print(parameter_count_table(model, max_depth=3))

print(f"FLOPS:\t{flops.total()}")
print(f"Params:\t{params['']}")

More details can be found in this docs, API of FlopCountAnalysis, API of parameter_count

torchinfo

mimc the tensorflow summary.

Installation:

pip install torchinfo

Example:

import torch
from torchinfo import summary
model = torch.hub.load("facebookresearch/pytorchvideo", model="x3d_m", pretrained=False)
summary(model, input_size=(1, 3, 16, 224, 224))     # You can ommit the input_size to only analyze the parameters.

Output:

==============================================================================================================
Layer (type:depth-idx)                                       Output Shape              Param #
==============================================================================================================
Net                                                          --                        --
├─ModuleList: 1-1                                            --                        --
│    └─ResStage: 2                                           --                        --
│    │    └─ModuleList: 3-1                                  --                        15,370
│    └─ResStage: 2                                           --                        --
│    │    └─ModuleList: 3-2                                  --                        73,248
│    └─ResStage: 2                                           --                        --
│    │    └─ModuleList: 3-3                                  --                        569,256
│    └─ResStage: 2                                           --                        --
│    │    └─ModuleList: 3-4                                  --                        1,347,440
│    └─ResNetBasicStem: 2-1                                  [1, 24, 16, 112, 112]     --
│    │    └─Conv2plus1d: 3-5                                 [1, 24, 16, 112, 112]     768
│    │    └─BatchNorm3d: 3-6                                 [1, 24, 16, 112, 112]     48
│    │    └─ReLU: 3-7                                        [1, 24, 16, 112, 112]     --
│    └─ResStage: 2-2                                         [1, 24, 16, 56, 56]       --
│    └─ResStage: 2-3                                         [1, 48, 16, 28, 28]       --
│    └─ResStage: 2-4                                         [1, 96, 16, 14, 14]       --
│    └─ResStage: 2-5                                         [1, 192, 16, 7, 7]        --
│    └─ResNetBasicHead: 2-6                                  [1, 400]                  --
│    │    └─ProjectedPool: 3-8                               [1, 2048, 1, 1, 1]        968,544
│    │    └─Dropout: 3-9                                     [1, 2048, 1, 1, 1]        --
│    │    └─Linear: 3-10                                     [1, 1, 1, 1, 400]         819,600
│    │    └─Softmax: 3-11                                    [1, 400, 1, 1, 1]         --
│    │    └─AdaptiveAvgPool3d: 3-12                          [1, 400, 1, 1, 1]         --
==============================================================================================================
Total params: 3,794,274
Trainable params: 3,794,274
Non-trainable params: 0
Total mult-adds (G): 4.73
==============================================================================================================
Input size (MB): 9.63
Forward/backward pass size (MB): 1358.41
Params size (MB): 15.18
Estimated Total Size (MB): 1383.22
==============================================================================================================

thop

Simple, 3.4k stars

Installation:

pip install thop

Example:

import torch
from thop import profile
imgs = torch.randn(1, 3, 16, 224, 224)
model = torch.hub.load("facebookresearch/pytorchvideo", model="x3d_m", pretrained=False)
macs, params = profile(model, inputs=(imgs, ))
print(macs, params)

Output:

[INFO] Register count_convNd() for <class 'torch.nn.modules.conv.Conv3d'>.
[WARN] Cannot find rule for <class 'pytorchvideo.layers.convolutions.Conv2plus1d'>. Treat it as zero Macs and zero Params.
[INFO] Register count_bn() for <class 'torch.nn.modules.batchnorm.BatchNorm3d'>.
[INFO] Register zero_ops() for <class 'torch.nn.modules.activation.ReLU'>.
[WARN] Cannot find rule for <class 'pytorchvideo.models.stem.ResNetBasicStem'>. Treat it as zero Macs and zero Params.
[WARN] Cannot find rule for <class 'torch.nn.modules.activation.Sigmoid'>. Treat it as zero Macs and zero Params.
[WARN] Cannot find rule for <class 'torch.nn.modules.container.Sequential'>. Treat it as zero Macs and zero Params.
[WARN] Cannot find rule for <class 'fvcore.nn.squeeze_excitation.SqueezeExcitation'>. Treat it as zero Macs and zero Params.
[WARN] Cannot find rule for <class 'pytorchvideo.layers.swish.Swish'>. Treat it as zero Macs and zero Params.
[WARN] Cannot find rule for <class 'pytorchvideo.models.resnet.BottleneckBlock'>. Treat it as zero Macs and zero Params.
[WARN] Cannot find rule for <class 'pytorchvideo.models.resnet.ResBlock'>. Treat it as zero Macs and zero Params.
[WARN] Cannot find rule for <class 'torch.nn.modules.linear.Identity'>. Treat it as zero Macs and zero Params.
[WARN] Cannot find rule for <class 'torch.nn.modules.container.ModuleList'>. Treat it as zero Macs and zero Params.
[WARN] Cannot find rule for <class 'pytorchvideo.models.resnet.ResStage'>. Treat it as zero Macs and zero Params.
[INFO] Register count_avgpool() for <class 'torch.nn.modules.pooling.AvgPool3d'>.
[WARN] Cannot find rule for <class 'pytorchvideo.models.x3d.ProjectedPool'>. Treat it as zero Macs and zero Params.
[INFO] Register zero_ops() for <class 'torch.nn.modules.dropout.Dropout'>.
[INFO] Register count_linear() for <class 'torch.nn.modules.linear.Linear'>.
[WARN] Cannot find rule for <class 'torch.nn.modules.activation.Softmax'>. Treat it as zero Macs and zero Params.
[INFO] Register count_adap_avgpool() for <class 'torch.nn.modules.pooling.AdaptiveAvgPool3d'>.
[WARN] Cannot find rule for <class 'pytorchvideo.models.head.ResNetBasicHead'>. Treat it as zero Macs and zero Params.
[WARN] Cannot find rule for <class 'pytorchvideo.models.net.Net'>. Treat it as zero Macs and zero Params.
4896248152.0 3794274.0

Benchmarking

# %% fvcore
import torch
from fvcore.nn import FlopCountAnalysis, parameter_count, flop_count_table
from mmcv import Config
from mmaction.models.builder import build_model, build_backbone
# torch.backends.cudnn.benchmark=True
inputs = torch.randn(1, 1, 3, 32, 224, 224).cuda()
# model = build_backbone(Config.fromfile(
#     "configs/apn_r3dsony_8x32_10e_aty13_video.py").model.backbone).cuda()

model = build_model(Config.fromfile(
    "configs/apn_r3dsony_8x32_10e_aty13_video.pyy").model).cuda()

# flops = FlopCountAnalysis(model.backbone, inputs)
# print(flop_count_table(flops, max_depth=10))
# params = parameter_count(model.backbone)
#
# print(f"GFLOPS:\t{flops.total()/1e9:.2f} G")
# print(f"Params:\t{params['']/1e6:.2f} M")

from mmcv import track_iter_progress
for i in track_iter_progress(list(range(10000))):
    # loss = model(inputs, class_label=torch.randint(20, (1, 1)).cuda(), return_loss=True)
    # loss['loss_cls'].backward()

    with torch.no_grad():
        out = model(inputs, return_loss=False)

Ultra Benchmarking

from urllib.request import urlopen

import timm
import torchvision.models as models
from PIL import Image
from torch.profiler import profile, record_function, ProfilerActivity
from fvcore.nn import FlopCountAnalysis, flop_count_table


def count_and_print(model, inputs):
    flops = FlopCountAnalysis(model, inputs)
    print(flop_count_table(flops, max_depth=3))


def benchmark_run_time(model, inputs, gpu=False):
    activities = [ProfilerActivity.CPU, ProfilerActivity.CUDA] if gpu else [ProfilerActivity.CPU]
    with profile(activities=activities, profile_memory=True,
                 record_shapes=True) as prof:
        with record_function(f"{model.__class__}_inference"):
            model(inputs)
    print(prof.key_averages().table(sort_by=f"{'cuda' if gpu else 'cpu'}_time_total", row_limit=10))


# Initialize the pseudo input
img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))
data_config = {'input_size': (3, 224, 224),
               'interpolation': 'bicubic',
               'mean': (0.485, 0.456, 0.406),
               'std': (0.229, 0.224, 0.225),
               'crop_pct': 0.875,
               'crop_mode': 'center'}
transforms = timm.data.create_transform(**data_config, is_training=False)
pre_input = transforms(img).unsqueeze(0).cuda()

# Initialize the models
effnet_s = models.efficientnet_v2_s(weights=models.EfficientNet_V2_S_Weights.IMAGENET1K_V1).cuda()
convnext = models.convnext_base(weights=models.ConvNeXt_Base_Weights.IMAGENET1K_V1).cuda()

# Compare the inference time
count_and_print(effnet_s, pre_input)
count_and_print(convnext, pre_input)

# Compare the flop count
benchmark_run_time(effnet_s, pre_input, gpu=True)
benchmark_run_time(convnext, pre_input, gpu=True)

Miscellaneous

Be careful about F.dropout

Unlike nn.Dropout which will be automatically shutdown after model.eval(), F.dropout requires an argument training=True/False to determine whether it’s on or off. In short, using nn.Dropout as possible.

Be careful about torch.squeeze()

Avoid using Tensor.squeeze() not specifying the dimension index. This is because it sometimes will remove the batch_size dimension if batch_size=1 and causes errors. Note that this may happen even if your training batch size is greater than 1 because the dataset size may cannot be divided by the batch size, e.g, dataset_size=13 and batch_size=4 produces batch_size=1 in its last batch.

Be careful about the tensor[N] - tensor[N, 1]

It will results a tensor of shape [N, N] (not [N]), which may cause memory problem when N is large. This happens to me when calculating the L1 loss and the regression head of model output tensors of shape [N, 1] but the label tensors are of shape [N].

Fixing the paramter gradient using the register_hook function

You can use the the Tensor.register_hook() to custom operation on gradient. Taking one of my usage as an example, I used the below codes to freeze the gamma and beta in BatchNormalization layers during training by setting their gradients to constant zero.

... get the BN layer instances as variable `m`
if isinstance(m, nn.BatchNorm3d):
    m.eval()
    if freeze_bn_affine:
        m.weight.register_hook(lambda grad: torch.zeros_like(grad))  # fix the gradient of gamma to zero, thus lock its value
        m.bias.register_hook(lambda grad: torch.zeros_like(grad))   # fix the gradient of beta to zero, thus lock its value

Use Tensor.requires_grad_(False) instead of Tensor.requires_grad = False

If you mistakenly type the requires_grad as require_grad, there will be no warnings or error raised.

  • Note that the weight and bias are Parameter, which is a subclasss of Tensor.
  • The motivation of above code is that if we freeze the normalization layers during training via m.eval(), which does freeze the layers but will encounter error when perform distributed training, known as the error there are paramters do NOT contribute to the loss computation. Altought this problem can be solved via setting find_unused_parameter=True, it’s tricky and increases the training time. The register_hook serves as a hack solution to retain the gradients of normalization layers but set them to zeros, thus will not be updated during the backpropagation.